593. Molecular Polarisability. The Molar Kerr Constants and Conformations of Eight Polyaryls as Solutes.

By R. J. W. Le Fèvre, (Mrs.) A. Sundaram, and K. M. S. Sundaram.

The molar Kerr constants of o-, m-, and p-terphenyl, $1,3,5$-triphenylbenzene, $1,1^{\prime}$ - and $2,2^{\prime}$-binaphthyl, and $1,3,5$-tri- α - and -tri- β-naphthylbenzene are recorded for infinite dilution in benzene at 25°. They can be reconciled with " equivalent" conformations, specified by angles ϕ through which the planes of the substituents need to be rotated, about the aryl-aryl junction lines, out of the plane of the substituted ring. Sets of ϕ 's then appear for the above solutes as $\left(+55^{\circ},+55^{\circ}\right),\left(+20^{\circ}, \pm 20^{\circ}\right),\left(+20^{\circ}, \mp 20^{\circ}\right)$, $\left(+38^{\circ},+38^{\circ},+38^{\circ}\right),\left(48^{\circ}\right),\left(c a .0^{\circ}\right),\left(+26,+26^{\circ},+26^{\circ}\right)$, and $\left(+20^{\circ},+20^{\circ}\right.$, $+20^{\circ}$), respectively. Where they have been made, previous assessments of ϕ by other methods do not agree among themselves or with the present values.

The marked anisotropy of polarisability of benzene ${ }^{1 a}$ and naphthalene ${ }^{1 b}$ suggested that information on the conformations of molecules such as the phenyl- and naphthyl-benzenes, the binaphthyls, etc., as solutes should be deducible from the Kerr effects, refractivities, and dielectric polarisations of their solutions. We here record appropriate observations for the eight hydrocarbons named in Tables 1-3.

Experimental

Solutes.--The terphenyls ($o-$, m. p. $56-57^{\circ}$; $m-$, m. p. $86-87^{\circ}$; $p-$, m. p. $211-212^{\circ}$) were gifts from Dr. J. A. Cade (A.E.R.E., Harwell) who had purified them by Sangster and Irvine's method. ${ }^{2}$ 2, 2^{\prime}-Binaphthyl was purchased from the Aldrich Chemical Co. Inc., U.S.A.; after crystallisation from benzene its m.p. was 188°. The remaining compounds have been prepared by following the directions of Vorländer, Fischer, and Wille ${ }^{3}$ for $1,3,5$-triphenylbenzene (m . p. 171°, from benzene), of Clapp and Morton ${ }^{4}$ for $1,3,5-$ tri- α-naphthylbenzene (m. p. 191°, from $1: 1$ ether-carbon tetrachloride) and the tri- β-isomer (m. p. 234-235 , from toluene), and of Bennett and Turner ${ }^{5}$ for $1,1^{\prime}$-binaphthyl (m. p. 153- 154°, from benzene).

Solvents, Methods, etc.-Standard techniques, previously described, ${ }^{1 a, 1 c, 1 d}$ have been used. Symbols for observed quantities and equations required in calculations are defined and explained in refs. 1 and 6 ; they have recently been summarised in this Journal. ${ }^{7}$

Results.-Observations are listed under the usual headings in Table 1; values deduced therefrom follow in Tables 2 and 3.

[^0]Table 1.
Incremental values of $\Delta n, \Delta n^{2}, \Delta d, \Delta \varepsilon$, and ΔB for solutions in benzene ${ }^{*}$ at 25°.

$\Sigma \Delta d / \sum w_{2}=0 \cdot 1778 ; \sum \Delta \varepsilon / \sum w_{2}=0 \cdot 368 ;$
$\Sigma \Delta B / \Sigma w_{2}=0.641 \times 10^{-7}$.

Solute:					
\mathbf{p}-Terphenyl					
342	5	15	61	15	11
581	8	25	104	24	18
676	9	28	118	32	21
748	10	31	131	33	22
805	11	34	144	37	25
968	13	40	173	45	28

Whence $\sum \Delta n / \sum w_{2}=0.136 ; \sum \Delta n^{2} / \sum w_{2}=0.420$; $\sum \Delta d / \sum w_{2}=0 \cdot 1774 ; \sum \Delta \varepsilon / \sum w_{2}=0.452 ;$ $\Sigma \Delta B / \sum w_{2}=3.03 \times 10^{-7}$.

Solute: 1,1'-Binaphthyl

211	4	12	42	11	6
320	6	18	64	16	9
499	9	26	106	25	15
561	10	29	113	28	17
645	11	32	137	32	19
798	14	41	160	40	24

Whence $\Sigma \Delta n / \sum w_{2}=0.178 ; \sum \Delta n^{2} / \sum w_{2}=0.521$; $\Sigma \Delta d / \sum w_{2}=0.2050 ; \sum \Delta \varepsilon / \sum w_{2}=0.501 ;$
$\Sigma \Delta B / \sum w_{2}=2.97 \times 10^{-7}$.

Solute: 1,3,5-Tri- α-naphthylbenzene

641	-	-	147	-	24
742	14	42	-	44	-
838	16	48	-	52	-
948	17	51	265	56	32
1136	-	-	420	-	40
1733	-	-	515	-	46
2142	-	-	570	-	-

Whence $\Sigma \Delta n / \Sigma w_{2}=0 \cdot 126 ; \Sigma \Delta n^{2} / \Sigma w_{2}=0.381$;
$\Sigma \Delta d / \sum w_{2}=0 \cdot 1759 ; \sum \Delta \varepsilon / \sum w_{2}=0 \cdot 383 ;$
$\sum \Delta B / \sum w_{2}=2 \cdot 03 \times 10^{-7}$.
Solute: 1,3,5-Triphenylbenzene; solvent: carbon tetrachloride \dagger

238	8	23	-150	24	9
341	12	35	-206	34	13
517	18	52	-344	50	20
802	28	82	-541	72	26
952	33	96	-585	84	35
1049	37	108	-663	94	37
1196	42	122	-754	106	43

Whence $\sum \Delta n / \sum w_{2}=0.349 ; \sum \Delta n^{2} / \sum w_{2}=1.01_{7}$; $\Sigma \Delta d / \sum w_{2}=-0.6365 ; \quad \sum \Delta \varepsilon / \sum w_{2}=0.911 ;$ $10^{7} \Delta B=3 \cdot 78 w_{2}-17 \cdot 6 w_{2}{ }^{2}$.

Solute: 2,2'-Binaphthyl

303	6	18	-	-	-
310	6	18	62	16	22
524	10	30	-	-	-39
546	10	30	103	29	39
752	14	42	158	40	54
842	-	-	177	46	59
955	-	-	207	51	68

Whence $\Sigma \Delta n / \Sigma w_{2}=0.189 ; \Sigma \Delta n^{2} / \Sigma w_{2}=0.567$;
$\sum \Delta d / \sum w_{2}=0.2076 ; \sum \Delta \varepsilon / \sum w_{2}=0.535$;
$\Sigma \Delta B / \Sigma w_{2}=7.11 \times 10^{-7}$.
Solute: 1,3,5-Tri- β-naphthylbenzene

623	13	39	160	40	44
838	18	54	219	52	58
1122	24	72	286	71	79
1458	31	93	380	93	99
1943	42	126	487	121	130

Whence $\Sigma \Delta n / \sum w_{2}=0.186 ; \sum \Delta n^{2} / \sum w_{2}=0.558 ; \quad$ Whence $\Sigma \Delta n / \sum w_{2}=0.214 ; \sum \Delta n^{2} / \sum w_{2}=0.642$;
$\Sigma \Delta d / \sum w_{2}=0.2384 ; ~ \sum \Delta \varepsilon / \sum w_{2}=0.601 ; \quad \quad \sum \Delta d / \sum w_{2}=0.2560 ; \sum \Delta \varepsilon / \sum w_{2}=0.630 ;$ $10^{7} \Delta B=4 \cdot 26 w_{2}-69 \cdot 5 w_{2}{ }^{2}$. $\Sigma \Delta B / \Sigma w_{2}=6.85 \times 10^{-7}$.

* For $w_{2}=0, n_{1}=1.4973$ (Na light), $d_{1}=0.87378, \varepsilon_{1}=2.2725, B_{1}=0.410 \times 10^{-7}(\mathrm{Na}$ light), at 25°. \dagger For $w_{2}=0, n_{1}=1.4575$ (Na light), $d=1 \cdot 58454, \varepsilon_{1}=2.2270, B_{1}=0.070 \times 10^{-7}(\mathrm{Na}$ light), at 25°.

Table 2.
Total polarisations at infinite dilution, molecular refractions, and dipole moments calculated from Table 1.

Solute	M_{2}	$\alpha \varepsilon_{1}$	β	$\gamma^{\prime} n_{1}{ }^{2}$	$\infty \mathrm{P}_{2}$ (c.c.)	$R_{\text {D }}$ (obs.) (c.c.)
o-Terphenyl	$230 \cdot 3$	0.368	$0 \cdot 2035$	0.324	78.5	$75 \cdot 7$
m-Terphenyl.	,,	0.383	$0 \cdot 2013$	0.381	$79 \cdot 3$	$78 \cdot 4$
p-Terphenyl		0.452	0.2030	0.420	$82 \cdot 1$	$79 \cdot 9$
1,3,5-Triphenylbenzene *	306.4	0.911	-0.4017	1.017	108.2	$108 \cdot 6$
1,1'-Binaphthyl	$254 \cdot 3$	0.501	$0 \cdot 2346$	0.521	$90 \cdot 3$	$90 \cdot 5$
2,2'-Binaphthyl		0.535	$0 \cdot 2376$	0.567	91.7	92.5
1,3,5-Tri- α-naphthylbenzene	456.6	0.601	$0 \cdot 2728$	0.558	$164 \cdot 8$	$160 \cdot 0$
1,3,5-Tri- β-naphthylbenzene	,,	0.630	$0 \cdot 2930$	$0 \cdot 642$	164•1	164•1

* Solvent: carbon tetrachloride; in other cases, benzene.

Table 3.
Molar Kerr constants at infinite dilution and exaltations from molar refractions calculated from Tables 1 and 2.

Solute	γ	δ	$10^{12} \infty\left({ }_{m} K_{2}\right)$	R_{D} (calc.) (c.c.) ${ }^{*}$	$10^{23} \Delta b$
o-Terphenyl	0.072	1.56	$36 \cdot 6$	$74 \cdot 4$	$0 \cdot 155$
m-Terphenyl	$0 \cdot 084$	4.95	$95 \cdot 3$,,	0.476
p-Terphenyl	0.091	$7 \cdot 39$	$137 \cdot 1$		$0 \cdot 654$
1,3,5-Triphenylbenzene $\dagger \ldots \ldots$	$0 \cdot 239$	54.0	125.5	98.5	1.201
1,1'-Binaphthyl	$0 \cdot 119$	$7 \cdot 24$	$145 \cdot 6$	86.7	$0 \cdot 452$
2,2'-Binaphthyl	$0 \cdot 126$	17.34	$340 \cdot 5$		0.690
1,3,5-Tri- α-naphthylbenzene	$0 \cdot 125$	$10 \cdot 4$	$369 \cdot 6$	153.1	$0 \cdot 820$
1,3,5-Tri- β-naphthylbenzene	$0 \cdot 143$	16.71	$585 \cdot 4$		$1 \cdot 308$

* From R_{D} of benzene ($26 \cdot 18$ c.c.) and R_{D} of naphthalene ($44.37 \mathrm{c.c}$.), together with bond-refraction data ${ }^{8}$ for the $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ links. \dagger Solvent: carbon tetrachloride; in other cases, benzene.

Discussion

The molar Kerr constants, $\infty\left(\mathrm{m} K_{2}\right)$, listed in Table 3, may be compared with those calculated for various conformations of the solutes concerned. Since with each of the eight molecules $1.05 R_{\mathrm{D}}$ exceeds ${ }_{\infty} P_{2}$ we initially regard them as non-polar (effects of this assumption are mentioned later). All $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles are taken to be 120°. From the principal polarisabilities of benzene ${ }^{9}\left(b_{1}=b_{2}=1 \cdot 12_{0}, b_{3}=0.736\right)$, or naphthalene ${ }^{1 b}$ ($b_{1}=2 \cdot 15, b_{2}=1 \cdot 76, b_{3}=1 \cdot 03$), and the corresponding magnitudes for the $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ bonds ${ }^{1 c}\left(b_{1,2, \text { or } 3}^{\mathrm{C}-\mathrm{H}}=0.064, b_{\mathrm{L}}^{\mathrm{C}-\mathrm{C}}=0.099, b_{T \text { or } V}^{\mathrm{C}-\mathrm{C}}=0.027\right)$, the principal polarisabilities of the hydrocarbons in question are deduced for specified arrangements of aryl groups attached to the nuclei of benzene or naphthalene. (Throughout this paper all polarisabilities are quoted as 10^{-23} c.c. units.) In every instance the molecular refractions indicate an exaltation of polarisability; this is applied in the plane containing the aryl-aryl bonds (along which conjugative displacements are presumed to occur; cf. ref lc, p. 301). From the molecular b_{i} 's for a given structure, the related ${ }_{\mathrm{m}} K$ (calc.) follows by equation (b) of ref. $1 b$. The solutes will now be discussed separately.
o-Terphenyl.-Two extreme conformations are shown as (I) and (II); intermediate forms are defined by angles ϕ measured by looking from the para-position of a peripheral

(II)

(III)

phenyl group towards the central ring and considering the rotation out of the central plane about the aryl-aryl bond as axis; clockwise rotations are given as $+\phi$, anti-clockwise as $-\phi$. Table 4 shows calculations for various pairs of ϕ 's.

The prediction in nearest accord with observation is obtained when both ϕ^{\prime} s are $+55^{\circ}$; for this conformation b_{1} is parallel to $O X, b_{2}$ is $c a .33^{\circ}$ to $O Y$, and 57° to $O Z$, and b_{3} lies at ca. 122° to $O Y$ and 33° to $O Z$. Leybold models disfavour the alternatives with $+\phi$ and $-\phi$ by indicating $\mathrm{H} \cdots \mathrm{H}$ overlap; such an objection does not apply, of course, to m and p-terphenyl.
m-Terphenyl.-Calculations for forms (III), (IV), and intermediate conformations are summarised in Table 5. The observed $\infty\left({ }_{m} K_{2}\right)$ is $94 \cdot 3 \times 10^{-12}$; the ${ }_{\infty} K^{\prime}$'s calculated for ϕ 's of $\pm 20^{\circ}$ are $96-93 \times 10^{-12}$. A decision between the alternatives is not strictly warranted by the present results, although rotations of the phenyl substituents in the same

[^1]${ }^{9}$ Aroney and Le Fèvre, J., 1960, 3600.

Table 4.
Semi-axes, anisotropy terms, and molar Kerr constants, calculated for (I), (II), and intermediate forms.

Angles ϕ	b_{1}	b_{2}	b_{3}	$10^{35} \theta_{1}$	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$
$0^{\circ}, \quad 0{ }^{\circ}$	$3 \cdot 381$	$3 \cdot 234$	$2 \cdot 003$	$20 \cdot 42$	$85 \cdot 9$
90, 90	3.074*	2.616*	$2 \cdot 773$	1.93	$8 \cdot 12$
+40, +40	$3 \cdot 302$	3.134	$2 \cdot 182$	-	$54 \cdot 8$
+40, - 40	$3 \cdot 302$	2.994	$2 \cdot 321$	-	$37 \cdot 8$
+45, +45	3.285	3-108	$2 \cdot 225$	11.50	$48 \cdot 4$
+45, -45	3.285	2.945	$2 \cdot 388$	$7 \cdot 31$	$30 \cdot 7$
$+50,+50$	3.269	3.079	$2 \cdot 270$	-	$42 \cdot 2$
+50, - 50	$3 \cdot 269$	2.894	$2 \cdot 455$	-	$24 \cdot 9$
+55, +55	$3 \cdot 252$	3.048	$2 \cdot 318$	$8 \cdot 60$	36.2
+55, -55	3.253	$2 \cdot 846$	$2 \cdot 519$	$4 \cdot 82$	$20 \cdot 3$
$+60,+60$	$3 \cdot 237$	3.013	$2 \cdot 368$	$7 \cdot 25$	$30 \cdot 5$

* No exaltation included, as conjugation deemed unlikely in the orthogonal conformation.

Table 5.
Semi-axes, anisotropy terms, etc., calculated for m-terphenyl.

Angles ϕ	b_{1}	b_{2}	b_{3}	$10^{35} \theta_{1}$	$10^{12}{ }_{\text {m }} K$
$0^{\circ}, 00^{\circ}$	$3 \cdot 313$	$3 \cdot 623$	$2 \cdot 003$	26.36	$110 \cdot 8$
90, 90	2.616*	3.074*	$2 \cdot 773$	1.93	$8 \cdot 12$
+20, +20	3.245 ${ }_{5}$	$3 \cdot 613$	$2 \cdot 080{ }_{5}$	22.82	$95 \cdot 96$
+20, -20	3.2455	$3 \cdot 600_{5}$	2.093	22.15	$93 \cdot 15$
+45, +45	3.024	$3 \cdot 650$	$2 \cdot 265$	$17 \cdot 15$	$72 \cdot 12$
+45, -45	3.024	$3 \cdot 527$	$2 \cdot 388$	11.62	$48 \cdot 86$

sense appear slightly more favoured than rotations in the opposite sense. In the $+20^{\circ}+20^{\circ}$ model, b_{1} is parallel to $O X, b_{2}$ at 6° to $O Y$, and 84° to $O Z$, and b_{3} at 96° to $O Y$ and 6° to $O Z$; when the ϕ^{\prime} s are $+20^{\circ}$ and -20° the structure has a plane of symmetry, so that b_{1}, b_{2}, and b_{3} are along $O X, O Y$, and $O Z$, respectively.

(V)

p -Terphenyl.-The $\infty\left(\mathrm{m}_{2}\right)$ by experiment is $137 \cdot 1 \times 10^{-12}$; computations, as for the previous two isomers, are in Table 6. The conformation in which the end rings are coplanar (ϕ^{\prime} s $+20^{\circ},+20^{\circ}$) produces an ${ }_{\infty} K$ calc. in somewhat better agreement with the observed value than does the alternative (ϕ^{\prime} s $+20^{\circ},+20^{\circ}$) in which the end rings are

Table 6.
Semi-axes, anisotropy terms, etc., calculated for p-terphenyl.

Angles ϕ	b_{1}	b_{2}	b_{3}	$10^{35} \theta_{1}$	$10^{12}{ }_{m} K$
$0^{\circ} \quad 0^{\circ}$	$3 \cdot 956$	3.158	$2 \cdot 003$	$34 \cdot 38$	$144 \cdot 6$
90,90	3•302*	2.388*	2.773	7.51	31.6
+20, +20	$3 \cdot 956$	$3 \cdot 068$	2.093	30.96	$130 \cdot 2$
+20, - 20	3.956	3-127	2.034	33.13	$139 \cdot 3$

disposed propeller-wise about the central ring; in the latter the principal axes are parallel to $O X, O Y$, and $O Z$, but in the former b_{1} is parallel to $O Y, b_{2}$ is $c a .13^{\circ}$ to $O X$ and 77° to $O Z$, while b_{3} is $c a .103^{\circ}$ and 13° to $O Z$.

Present and Previous Conclusions concerning Terphenyls.-None of the above conformations, for which ${ }_{\mathrm{m}} K$ (calc) and ${ }_{\mathrm{m}} K$ (obs) are close, is advanced as unique (as though only a single solute species existed in each case), but rather as an " equivalent" conformation to describe a state of vibration in which the substituent phenyl groups are probably twisting about an unknown $\phi_{\text {equil. }}$. Nevertheless it seems clear that in no instance is a fully planar structure the equilibrium form, and from steric causes it is reasonable that $\phi_{\text {equiv. }}$ for o-terphenyl should exceed the corresponding values for the meta- and paraisomers.

Previous workers, using different methods, have not reached consistent conclusions. Mukerji and Singh ${ }^{10}$ (Raman spectra) viewed p-terphenyl as planar. Hoffmann and Kinell ${ }^{11}$ (nuclear magnetic resonance spectra) suggested that the two substituent groups in o-terphenyl are perpendicular to the central ring. Ultraviolet spectra ${ }^{12-15}$ appear generally to have supported non-planarity of the solute; Suzuki ${ }^{15}$ deduced ϕ 's for 0 - and p-terphenyl of 43° and 10°, respectively. From infrared spectra, Hidalgo and Bellanato ${ }^{16}$ thought a planar structure of p-terphenyl was evident; Dale ${ }^{14}$ concluded that o - and p-terphenyl were not flat in solution, and Stewart and Hellmann ${ }^{17}$ stated the same for 0 and m-terphenyl. Bothorel, ${ }^{18}$ from Rayleigh light-scattering studies of solutions, reported a 62° twist of the phenyl groups throughout all three terphenyls. Electron diffraction ${ }^{19,20}$ by o-terphenyl agreed with the outer rings' being rotated through $\sim 45^{\circ}$ in the same direction.

1,3,5-Triphenylbenzene.-Conformations intermediate between (VII) and (VIII), each requiring three angles ϕ (defined as above) for their specification, are considered. Table 7 deals with a selection of cases in which the phenyl groups are rotated by various angles. When the ϕ 's are equal in magnitude and sign, the principal molecular axes are obviously located with $b_{1}=b_{2}$ in the YOX plane and with b_{3} parallel to $O Z$; when the ϕ 's are nonuniform, b_{1} and b_{2} differ slightly and b_{3} deviates somewhat from $O Z$ (e.g., in the three instances listed last in Table 7 the direction cosines for b_{3} with $O Z$ are $0.9869,0.9840$, and 0.9679 , respectively). Ref. 20 (M 252) cites two structures, one ${ }^{21}$ in which all three ϕ 's are $46^{\circ} \pm 5^{\circ}$, and another ${ }^{22}$ in which they are $+34^{\circ},-27^{\circ}$, and $+24^{\circ}$; the former leads to an ${ }_{\mathrm{m}} K$ which is lower, and the latter to an ${ }_{\mathrm{m}} K$ which is higher, than the observed $\infty\left({ }_{\mathrm{m}} K_{2}\right)$, which is 125.5×10^{-12}. Were a single conformation sought for this hydrocarbon as a solute, then the form having uniform ϕ 's of 38° would be suitable; twists of the order 25°, originally mooted by Lonsdale, ${ }^{23}$ seem too small since they would produce ${ }_{m} K$'s which exceed 165×10^{-12}. Table 7 includes examples showing that twisting one phenyl by $-\phi^{\circ}$, and the other two by $+\phi^{\circ}$, raises the predicted ${ }_{\mathrm{m}} K$; such calculations illustrate the facts that many " equivalent" conformations could be devised and that these might describe either states of oscillation or mixtures of individual species. However, $\mathrm{H}-\mathrm{H}$ repulsions appear to us to favour forms with uniform ϕ 's, and it is of interest that by

[^2]Table 7.
Semi-axes, anisotropy terms, etc., calculated for $1,3,5$-triphenylbenzene with various ϕ 's.

Angles ϕ			$b_{1}=b_{2}$		b_{3}	$10^{35} \phi_{1}$	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$
0°,	0°,	0°	$4 \cdot 885_{5}$		2.637	60.08	$252 \cdot 6$
90,	90,	90	3.707 ${ }_{5}$ *		3.792*	$0.08{ }_{5}$	$0 \cdot 4$
20,	20,	20	4.818		$2 \cdot 772$	$49.75{ }^{\text {b }}$	$209 \cdot 2$
30,	30,	30	$4 \cdot 741$		2.926	$39 \cdot 15$	$164 \cdot 6$
37,	37,	37	$4 \cdot 676_{5}$		3.055	31.25	131.4
38,	38,	38	$4 \cdot 666_{5}$		3.075	30.10	$126 \cdot 6$
45,	45,	45	4.597		3.214	22.71	$95 \cdot 5$
			b_{1}	b_{2}			
$+34^{\circ}$,	-27°	$+24^{\circ}$	$4 \cdot 746$	4.813	$2 \cdot 849_{5}$	44.30	186.3
-38,	+38,	$+38$	$4 \cdot 666_{5}$	$4 \cdot 742_{5}$	$2 \cdot 999$	34.62	$145 \cdot 6$
-45,	+45,	+45	4.597	$4.697{ }^{\text {b }}$	$3 \cdot 114_{5}$	27.99	117.7
0 ,	90,	90	$4.908 \dagger$	4.093	$3 \cdot 407$	$20 \cdot 13$	$84 \cdot 65$

* See footnote to Table 4. \dagger Exaltation added only to the planar diphenyl portion.
assuming $b_{1}=b_{2}$ and that ${ }_{\mathrm{E}} P=0.96 R_{\mathrm{D}}$, the experiment results (Tables 2 and 3) yield $b_{1}=b_{2}=4.66$ and $b_{3}=3.08$; attention is thus again drawn (cf. Table 7) to $\phi^{\prime} \mathrm{s}$ of $+38^{\circ}$, $+38^{\circ},+38^{\circ}$ as specifying an acceptable " equivalent" structure.
(IX)

1,1'-Binaphthyl.-Extreme planar conformations appear as (IX) and (X) but, because the $\mathrm{C}_{10} \mathrm{H}_{7}-\mathrm{C}_{10} \mathrm{H}_{7}$ bond is in both parallel to a principal axial direction in each naphthyl unit, (IX) and (X) cannot be distinguished by their polarisability anistropy. Non-planar variants of (IX or X), generated by rotations of ϕ° about the internuclear link, need also to be considered, as Table 8 shows. The observed $\infty\left({ }_{m} K_{2}\right)$ is 145.6×10^{-12}.

Table 8.
Semi-axes, anisotropy terms, etc., calculated for $1, \mathrm{l}^{\prime}$-binaphthyls with various ϕ 's.

Angle ϕ	b_{1}	b_{2}	b_{3}	$10^{35} \theta_{1}$	$10^{12} \mathrm{~m} K$	Angle ϕ	b_{1}	b_{2}	b_{3}	$10^{35} \theta_{1}$	$10^{12} \mathrm{~m} K$
0°	$4 \cdot 651 \ddagger$	$3 \cdot 491$	1.959	$65 \cdot 00$	$273 \cdot 3$	45°	3.871	3.943 9	$2 \cdot 287$	31.24	$131 \cdot 4$
0	$4 \cdot 425$ §	$3 \cdot 717$ §	1.959	$57 \cdot 48$	241.7	48	$4 \cdot 280_{5} \ddagger$	$3 \cdot 491$	$2 \cdot 3295$	34-34	144-4
0	$4 \cdot 199$	3.943 T	1.959	$53 \cdot 60$	$225 \cdot 4$	48	$4 \cdot 054{ }_{5}$ §	3.717 §	$2 \cdot 3295$	$29 \cdot 80$	$125 \cdot 3$
90 *	3.079	$3 \cdot 491$	3.079	$2 \cdot 02$	8.5	48	$3.828{ }_{5}$	3.943 ¢	$2 \cdot 3295$	28.90	121.5
45	$4 \cdot 323$ +	$3 \cdot 491$	$2 \cdot 287$	$37 \cdot 36$	$157 \cdot 1$	$70 \dagger$	$3 \cdot 914{ }^{+}$	3.491	$2 \cdot 696$	$13 \cdot 63$	$57 \cdot 32$
45	$4 \cdot 097$ §	$3 \cdot 717$ §	$2 \cdot 287$	32.48	136.6						

* Δb not included; were it spread equally over the 3 semi-axes, the ${ }_{\mathrm{m}} K$ calc. would remain 8.5×10^{-12}. $\dagger \Delta b$ included as in footnote \S or ${ }^{\text {if }}$ leads to lower values of ${ }_{\mathrm{m}} K$ (calc.). \ddagger Polarisability exaltation Δb added to b_{1}. $\S \Delta b$ divided equally over b_{1} and b_{2}. II Δb added to b_{2}.

Although it seems reasonable to regard the exaltation of polarisability as operating mainly along the $1, \mathrm{l}^{\prime}$-bond (as in biphenyl ${ }^{24}$), in compiling Table 8 two other possible distributions have been included. Since a preliminary X-ray study ${ }^{25}$ has suggested that a ϕ of 73° may occur in the crystal-held molecule, the calculation for the case when $\phi=70^{\circ}$ has also been carried through, yielding an ${ }_{\mathrm{m}} K$ which is too small; the value for $\phi=73^{\circ}$ would be still smaller.

Both the details in Table 8 and Harris and Mellor's isolation ${ }^{26}$ of optically active

[^3]$1, l^{\prime}$-binaphthyl show a completely planar structure to be unacceptable. Comparing the found and calculated ${ }_{m} K$'s provides an " equivalent " conformation for this solute in which ϕ is in the neighbourhood of 48°.

2,2'-Binaphthyl.-From models either of the flat extreme forms (XI) and (XII) appears unobjectionable. Table 9 contains the relevant data for both.

(XI)

The ${ }_{\mathrm{m}} K$ by experiment is 340.5×10^{-12}; accordingly-with $\phi=0^{\circ}$ in both casesform (XI) appears more appropriate than (XII).

Table 9.
Semi-axes, anisotropy terms, etc., calculated for $2,2^{\prime}$-binaphthyls with various ϕ 's.

Angle ϕ	b_{1}	b_{2}	b_{3}	$10^{35} \theta_{1}$	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$
Form (XI)					
0° *	4.944	$3 \cdot 436$	1.959	79.42	334
$90 \dagger$	$4 \cdot 119$	$2 \cdot 744$	2.786	$21 \cdot 80$	91.7
Form (XII)					
$0 \ddagger$	$4 \cdot 766$	3.614	1.959	70.98	298.5

* b_{1} and b_{2} almost parallel to $O X$ and $O Y$, respectively; Δb included in b_{1}. If Δb taken as operative along the $\mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{ar}}$ bond, b_{1} and b_{2} become 4.792 and 3.588 , whence ${ }_{\mathrm{m}} K$ calc. is 303×10^{-12}. \dagger Exaltation not included; cf. footnote to Table 4. Locations of semi-axes not defined as ${ }_{\mathrm{m}} K$ (calc.) is too small. $\ddagger b_{1}$ and b_{2} in the molecular plane with $b_{1} c a .30^{\circ}$ anti-clockwise from $O X, \Delta b$ added to b_{1}.

1,3,5-Tri- α-naphthylbenzene.-The two possible planar structures, (XIII) and (XIV), have the same anisotropy of polarisability and therefore cannot be distinguished by the Kerr effect; for both, the calculated ${ }_{\mathrm{m}} K$ is 676×10^{-12}. Since the observed ${ }_{\mathrm{m}} K$ is only 370×10^{-12}, non-planar modifications of (XIII) or (XIV) are indicated; Table 10 shows that a suitable " equivalent" structure is achieved when the three naphthyl radicals are rotated each by about 26°. No data in the literature with which to compare this result

Table 10.

Semi-axes, anisotropy terms, etc., calculated for 1,3,5-tri- α-naphthylbenzene with various ϕ^{\prime} 's.

Angles ϕ	$b_{1}{ }^{*}=b_{2}{ }^{*}$		b_{3}	$10^{35} \phi_{1}$	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$
$0^{\circ}, 0^{\circ}, 0^{\circ}$			$3 \cdot 522$	$160 \cdot 7{ }_{7}$	$676 \cdot 1$
$90,90,90$		$10 \dagger$	$6.882 \dagger$	37-32	156.9
45, 45, 45			$5 \cdot 202$	15.94	$67 \cdot 0$
30, 30, 30			$4 \cdot 362$	$69 \cdot 49$	$292 \cdot 2$
27, 27, 27			$4 \cdot 214$	82.83	$348 \cdot 3$
26, 26, 26			4-168	87-22	366.8
26, 26, - 26	$\stackrel{b_{1}}{7.150}$	$\begin{gathered} b_{2} \\ 6.895 \end{gathered}$	3.868	$119 \cdot 2$	$501 \cdot 3$

* Exaltation divided equally between b_{1} and b_{2}. \dagger See footnote to Table 4.
appear to exist, although Magill and Ubbelohde ${ }^{27}$ quote unpublished X-ray work by Parry as suggesting that the planes of the naphthalene groups are at " a large angle to the plane of the central benzene ring," and in their calculations they took this angle to be 45°.

1,3,5-Tri- β-naphthylbenzene.-Here, unilke the tri- α-case, none of the principal axes

[^4]

(XIV)
of a naphthyl group is collinear with its associated naphthyl-phenyl bond. Accordingly, the ${ }_{m} K^{\prime}$'s of the two planar extremes (XV) and (XVI) should theoretically be different, and rotations of $+90^{\circ}$ or -90° need to be considered with (XVII). Relevant calculations are in Table 11.

(XVII)

Experiment (Table 3) gives $\infty\left({ }_{m} K_{2}\right)$ as 585×10^{-12}, thereby counter-indicating all the fully planar and fully orthogonal extremes as appropriate single " equivalent" formulæ for this solute. Measurement and prediction can be reconciled satisfactorily if the β-naphthyl groups in either (XV) or (XVI) are rotated ca. 20° out-of-plane from the representations as printed; this angle is less than that found for the tri- α-isomer, as might be expected from simple steric considerations (although in general the ϕ 's in this paper cannot be so explained except when the foreseeable hindrance is gross, as with o-terphenyl

Table 11.
Semi-axes, anisotropy terms, etc., calculated for 1,3,5-tri- β-naphthylbenzenes with various ϕ 's.

Angles ϕ	$b_{1}{ }^{*}$	b_{2} *	b_{3}	$10^{35} \theta_{1}$	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$
Form (XV)					
$0^{\circ}, 0^{\circ}, 0^{\circ}$	$7 \cdot 444$	7.444	3.522	182.8	$768 \cdot 7$
20, 20, 20	$7 \cdot 271$	$7 \cdot 271$	3.868	$137 \cdot 6$	$578 \cdot 6$
Form (XVI)					
$0,0,0$	7.782	$7 \cdot 106$	3.522	186.9	$786 \cdot 0$
20, 20, 20	7.605	6.939	3.866	$141 \cdot 82$	596.4
Form (XVII)					
$90,90,90$	5.549 \dagger	$5.549 \dagger$	6.004	$3 \cdot 46$	$10 \cdot 3$
90, 90, - 90	$5 \cdot 549 \dagger$	$5 \cdot 369 \dagger$	6.184	6.535	$27 \cdot 5$

or $1, \mathrm{l}^{\prime}$-binaphthyl; the finding ${ }^{28}$ that in hexaphenylbenzene the $\mathrm{C}_{6} \mathrm{H}_{5}$ rings oscillate at $\pm 10^{\circ}$ about orthogonal dispositions is relevant in this connexion).
${ }^{28}$ Almenningen, Bastiansen, and Skancke, Acta Chem. Scand., 1958, 12.1215.

Effects of Non-vanishing Solute Moments.-The eight polyaryls have been considered above as non-polar because, as already stated, the measurements give by conventional treatment no grounds for assuming otherwise. However, were these hydrocarbons unusual in having distortion polarisations nearly equal to their R_{D} 's, it may be significant that three of the four cases in Table 2 displaying an excess of ${ }_{\infty} P_{2}$ over R_{D} happen to correspond to structures for which small moments might be expected. If we put ${ }_{\mathrm{D}} P=R_{\mathrm{D}}$, the results would yield 0.37 D for o-terphenyl, 0.21 D for m-terphenyl, and 0.49 D for tri- α-naphthylbenzene, and appropriate non-zero θ_{2} terms should enter the relevant preceding calculations of molar Kerr constants. By regarding the moments just quoted as maximum estimates, and making allowances for θ_{2}, we find the ϕ 's required to produce the observed ${ }_{\mathrm{m}} K$'s need to be changed from 55° to 62° for o-terphenyl, from 20° to 22° for m-terphenyl, and from 26° to 27.5° for tri- α-naphthylbenzene. In conclusion, we submit that the ϕ 's of this paper should not be judged against others reported for the crystalline or gaseous states; ours refer to solutes, the previous data for which ${ }^{\mathbf{1 5 , 1 8}}$ are sparse and discordant.

Acknowledgment is made to the University of Sydney for the award of Gritton and Stephens Research Scholarships to K. M. S. S. and A. S., respectively.

University of Sydney, N.S.W., Australia.
[Received, September 3rd, 1962.]

[^0]: ${ }^{1}$ Le Fèvre and Le Fèvre, (a) J., 1953, 4041 ; 1954, 1577; (b) 1955, 1641 ; (c) Rev. Pure Appl. Chem., 1955, 5, 261; (d) Chap. XXXVI in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, 3rd edn., Vol. I, p. 2459.
 ${ }^{2}$ Sangster and Irvine, J. Chem. Phys., 1956, 24, 670.
 ${ }^{3}$ Vorländer, Fischer, and Wille, Ber., 1929, 62, 2836.
 ${ }^{4}$ Clapp and Morton, J. Amer. Chem. Soc., 1936, 58, 2172.
 5 Bennett and Turner, J., 1914, 105, 1057.

 - Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953, Chapter 2; Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.

 7 Le Fèvre and Sundaram, J., 1962, 1494.

[^1]: ${ }^{8}$ Vogel, Cresswell, Jeffery, and Leicester, J., 1952, 514.

[^2]: ${ }^{10}$ Mukerji and Singh, Phil. Mag., 1946, 37, 874.
 11 Hoffmann and Kinell, Arch. Sci. (Geneva), 1958, 11. 227.
 12 Merkel and Wiegand, Z. Naturforsch., 1948, 3b, 93.
 13 Derkosch and Langer, Monatsh., 1955, 86, 924.
 ${ }_{14}$ Dale, Acta Chem. Scand., 1957, 11, 640, 650.
 ${ }^{15}$ Suzuki, Bull. Chem. Soc. Japan, 1960, 33, 109.
 ${ }^{16}$ Hidalgo and Bellanato, Anales real Soc. espan. Fis. Quim., 1955, 51, B, 227.
 17 Stewart and Hellmann, J. Res. Nat. Bur. Stand., 1958, 60, 125.
 ${ }^{18}$ Bothorel, Ann. Chim. (France), 1959, 4, 669.
 19 Karle and Brockway, J. Amer. Chem. Soc., 1944, 66, 1974.
 ${ }^{20}$ "Tables of Interatomic Distances and Configuration in Molecules and Ions," ed. Sutton, Chem. Soc. Spec. Publ. No. 11, 1958, M 247.
 ${ }^{21}$ Bastiansen and Hassel, Acta Chem. Scand., 1952, 6, 205.
 ${ }_{22}$ Farag, Acta Cryst., 1954, 7, 117.
 ${ }^{23}$ Lonsdale, Z. Krist., 1937, 97, 91.

[^3]: ${ }^{24}$ Chau, Le Fèvre, and Le Fèvre, J., 1959, 2666; cf. ref. lc, p. 301.
 ${ }^{25}$ Brown, Trotter, and Robertson, Proc. Chem. Soc., $1961,115$.
 ${ }^{36}$ Harris and Mellor, Chem. and Ind., 1961, 1082.

[^4]: ${ }^{27}$ Magill and Ubbelohde, Trans. Faraday Soc., 1958, 54, 1811.

